Дифференцирующие цепи. Дифференцирующие и интегрирующие RC-цепи Интегрирующие и дифференцирующие rc цепочки


RC-цепь - электрическая цепь, состоящая из конденсатора и резистора. Её можно рассматривать как делитель напряжения с одним из плеч, обладающих ёмкостным сопротивлением переменному току.

Коэффициент передачи

Интегрирующая RC-цепочка (рис 2) Диффер-ая рис 1

Анализируем RC-цепочку. Применяется как:

1. фильтр частот

Пассивный фильтр

Пассивным электрическим фильтром называется электрическая цепь, предназначенная для выделения определенной полосы частот из сигнала, поступающего на его вход.

Фильтр верхних частот (затухание сигнала)

RC-цепь + ОУ(не даёт затух.сигн,стабильн,коэф пропускания ,усил сигнал

Активный фильтр-менять избирательность фильтра.

Фильтр нижних частот

Коэф передачи


Дифференцирующей цепью называют линейный четырехполюсник, у которого выходное напряжение пропорционально производной входного напряжения. Принципиальная схема дифференцирующей rC -цепи приведена на рис. 5.13, а. Выходное напряжение u вых снимается с резистора r . По второму закону Кирхгофа

а следовательно,

Основные свойства и характеристики п/п. Собственная и примесная проводимость. Зонная энергетическая диаграмма. Уровень Ферми. Генерация и рекомбинация носителей. Время жизни и диффузионная длина. Диффузия и дрейф.

По электрическому сопротивлению полупроводники занимают промежуточное место между проводниками и изоляторами. Полупроводниковые диоды и триоды имеют ряд преимуществ: малый вес и размеры, значительно больший срок службы, большую механическую прочность.

Рассмотрим основные свойства и характеристики полупровод­ников. В отношении их электрической проводимости полупровод­ники разделяются на два типа: с электронной проводимостью и с дырочной проводимостью.

Полупроводники с электронной проводимостью имеют так на­зываемые «свободные» электроны, которые слабо связаны с ядрами атомов. Если к этому полупроводнику приложить разность потенциалов, то «свободные» электроны будут двигаться поступательно – в определенном направлении, создавая, таким образом, электри­ческий ток. Поскольку в этих типах полупроводников электрический ток представляет собой перемещение отрицательно заря­женных частиц, они получили название проводников типа п (от слова negative - отрицательный).

Полупроводники с дырочной проводимостью называются полу­проводниками типа р (от слова positive - положительный). Прохождение электрического тока в этих типах полупроводников можно рассматривать как перемещение положительных зарядов. В полупроводниках с р -проводимостью нет свободных электронов; если атом полупроводника под влиянием каких-либо причин по­теряет один электрон, то он будет заряжен положительно.

Отсутствие одного электрона в атоме, вызывающее положи­тельный заряд атома полупроводника, назвали дыркой (это зна­чит, что образовалось свободное место в атоме). Теория и опыт показывают, что дырки ведут себя как элементарные положитель­ные заряды.

Дырочная проводимость состоит в том, что под влиянием при­ложенной разности потенциалов перемещаются дырки, что равно­сильно перемещению положительных зарядов. В действительности, при дырочной проводимости происходит следующее. Предположим, что имеются два атома, один из которых снабжен дыркой (отсут­ствует один электрон на внешней орбите), а другой находящий­ся справа, имеет все электроны на своих местах (назовем его ней­тральным атомом). Если к полупроводнику приложена разность потенциалов, то под влиянием электрического поля электрон из нейтрального атома, у которого все электроны на своих местах, переместится влево на атом, снабженный дыркой. Благодаря этому атом, имевший дырку, становится нейтральным, а дырка пере­местилась вправо на атом, с которого ушел электрон. В полупровод­никовых приборах процесс «заполнения » дырки свободным электро­ном называется рекомбинацией . В результате рекомбинации исчезает и свободный электрон, и дырка, а создается нейтральный атом. И так, перемещение дырок происходит в направлении, противоположном движению электронов.

В абсолютно чистом (собственном) полупроводнике под действием тепла или света электроны и дырки рождаются парами, поэтому число электронов и дырок в собственном полупроводнике одинаково.

Для создания полупроводников с резко выраженными концентрациями электронов или дырок чистые полупроводники снабжают примесями, образуяпримесные полупроводники . Примеси бывают донорные, дающие электроны, и акцепторные , образующие дырки (т. е. отрывающие электроны от атомов). Следовательно, в полупроводнике с донорной примесью проводимость будет преимущественно электронной, или n – проводимостью. В этих полупроводниках основными носителями зарядов являются электроны, а неосновными – дырки. В полупроводнике с акцепторной примесью, наоборот, основными носителями зарядов являются дырки, а неосновными – электроны; это – полупроводники; с р -проводимостью.

Основными материалами для изготовления полупроводниковых диодов и триодов служат германий и кремний; по отношению к ним донорами являются сурьма, фосфор, мышьяк; акцепторами – индий, галлий, алюминий, бор.

Примеси, которые обычно добавляются в кристаллический полупроводник, резко изменяют физическую картину прохождения электрического тока.

При образовании полупроводника с n -проводимостью в полу­проводник добавляется донорная примесь: например, в полупро­водник германий добавляется примесь сурьмы. Атомы сурьмы, являющиеся донорными, сообщают германию много «свободных» электронов, заряжаясь при этом положительно.


Таким образом, в полупроводнике n-проводимости, образован­ного примесью, имеются следующие виды электрических заря­дов:

1 -подвижные отрицательные заряды (электроны), являющиеся основными носителями (как от донорной примеси, так и от соб­ственной проводимости);

2 -подвижные положительные заряды (дырки) – неосновные носители, возникшие от собственной проводимости;

3 -неподвижные положительные заряды – ионы донорной при­меси.

При образовании полупроводника с р-проводимостью в полупроводник добавляется акцепторная примесь: например, в полупроводник германий добавляется примесь индия. Атомы индия являющиеся акцепторными, отрывают от атомов германия элек­троны, образуя дырки. Сами атомы индия при этом заряжаются отрицательно.

Следовательно, в полупроводнике р-проводимости имеются сле­дующие виды электрических зарядов:

1 -подвижные положительные заряды (дырки) – основные но­сители, возникшие от акцепторной примеси и от собственной про­водимости;

2 -подвижные отрицательные заряды (электроны) – неоснов­ные носители, возникшие от собственной проводимости;

3 -неподвижные отрицательные заряды – ионы акцепторной примеси.

На рис. 1 показаны пластинки р -германия (а) и n -германия (б) с расположением электрических зарядов.

Собственная проводимость полупроводников . Собственным полупроводником,или же полупроводником i-типа называется идеально химически чистый полупроводник с однородной кристаллической решёткой. Ge Si

Кристаллическая структура полупроводника на плоскости может быть определена следующим образом.

Если электрон получил энергию, большую ширины запрещённой зоны, он разрывает ковалентную связь и становится свободным. На его месте образуется вакансия, которая имеет 4-хвалентный

положительный заряд, равный по величине заряду электрона и называется дыркой. В полупроводнике i-типа концентрация электронов ni равна концентрации дырок pi. То есть ni=pi.

Процесс образования пары зарядов электрон и дырка называется генерацией заряда.

Свободный электрон может занимать место дырки, восстанавливая ковалентную связь и при этом излучая избыток энергии. Такой процесс называется рекомбинацией зарядов. В процессе рекомбинации и генерации зарядов дырка как бы движется в обратную сторону от направления движения электронов, поэтому дырку принято считать подвижным положительным носителем заряда. Дырки и свободные электроны, образующиеся в результате генерации носителей заряда, называются собственными носителями заряда, а проводимость полупроводника за счёт собственных носителей заряда называется собственной проводимостью проводника.

2) Примесная проводимость проводников.

Так как у полупроводников i-типа проводимость существенно зависит от внешних условий, в

Полупроводниковых приборах применяются примесные полупроводники.

Если в полупроводник ввести пятивалентную примесь, то 4 валентных электрона восстанавливают ковалентные связи с атомами полупроводника, а пятый электрон остаётся свободным. За счёт этого концентрация свободных электронов будет превышать концентрацию дырок. Примесь, за счёт которой ni>pi, называется донорной примесью.

Полупроводник, у которого ni>pi, называется полупроводником с электронным типом

проводимости, или полупроводником n-типа.

В полупроводнике n-типа электроны называются основными носителями заряда, а дырки– неосновными носителями заряда.

При введении трёхвалентной примеси три её валентных электрона восстанавливают ковалентную связь с атомами полупроводника, а четвёртая ковалентная связь оказывается не восстановленной, т. е. имеет место дырка.

В результатеэтогоконцентрациядырокбудетбольшекон-центрацииэлектронов.

Примесь, при которой pi>ni, называется акцепторной примесью.

Полупроводник, у которого pi>ni, называется полупроводником с дырочным типом

проводимости, или полупроводником p-типа.

В полупроводнике p-типа дырки называются основными носителями заряда, а электроны– неосновными носителями заряда.

Сложные радиоэлектронные устройства состоят из простых цепей. Рассмотрим цепь, состоящую из резистора и конденсатора, включенных последовательно с идеальным генератором напряжения, показанную на рис. 3.3.

Рис.3.3. Дифференцирующая цепь

Если выходное напряжение снимается с резистора, то цепь называется дифференцирующей, если с конденсатора – интегрирующей. Эти линейные цепи характеризуются стационарными и переходными характеристиками. Это связано с тем, что изменение величины действующего в цепи напряжения приводит к тому, что токи и напряжения в различных участках цепи приобретают новые значения. Изменение состояния цепи происходит не мгновенно, а в течение некоторого интервала времени. Поэтому различают установившееся и переходное состояние электрической цепи.

Электрические процессы считаются установившимися (стационарными), если закон изменения всех напряжений и токов совпадает с точностью до постоянных величин с законом изменения действующего в цепи напряжения от внешнего источника. В противном случае считают, что цепь находится в переходном (нестационарном) состоянии.

К стационарным характеристикам относятся амплитудно-частотная и фазовая характеристики линейной цепи.

Нестационарное состояние линейной цепи описывается переходной характеристикой.

Будем считать, что к входу цепи подключен идеальный генератор напряжения . На основании второго закона Кирхгофа для дифференцирующей цепи можно записать дифференциальное уравнение, связывающее напряжения и ток в ветвях цепи:

(3.2)

Так как напряжение на выходе цепи , то:

(3.3)

Подставляя в интеграл значение тока, получим:

(3.4)

Продифференцируем левую и правую части последнего уравнения по времени:

(3.5)

Перепишем это уравнение, в следующем виде:

, (3.6)

Где =— параметр цепи называемый постоянной времени цепи.

В зависимости от величины постоянной времени возможны два различных соотношения между первым и вторым слагаемыми правой части уравнения.

Если постоянная времени большая по сравнению с периодом гармонических сигналов >>Или с длительностью импульсов >>, которые можно подавать на вход этой цепи, то

И напряжение на выходе цепи с небольшими искажениями повторяет входное напряжение:

Если же постоянная времени мала по сравнению с периодом гармонических сигналов <<Или с длительностью импульсов <<, то

Отсюда напряжение на выходе равно:

Таким образом, в зависимости от величины постоянной времени такая -цепь может либо с определенными искажениями передавать входной сигнал на выход, либо с определенной степенью точности его дифференцировать. При этом форма выходного сигнала будет разной. Ниже на рис. 3.4 представлены входное напряжение, напряжения на резисторе и конденсаторе для случаев, когда постоянная времени велика и постоянная времени мала .

А Б

Рис. 3.4. Напряжения на элементах дифференцирующей цепи при (А ) и (Б )

В начальный момент времени на резисторе появляется скачок напряжения, равный амплитуде входного сигнала, а затем начинается заряд конденсатора, во время которого напряжение на резисторе будет уменьшаться.

Когда постоянная времени , конденсатор не успевает зарядиться до амплитуды входного импульса и -цепь с небольшими искажениями передает входной сигнал на выход. При << конденсатор успеет полностью зарядиться до амплитуды входного напряжения за время действия первого импульса, а за время паузы между импульсами – полностью разрядиться. При этом на выходе цепи появляются укороченные импульсы, приблизительно соответствующие производной от входного сигнала. Считается, что когда Цепочка дифференцирует входной сигнал.

Теперь определим коэффициент передачи дифференцирующей цепи. Комплексный коэффициент передачи дифференцирующей цепи при подаче на вход гармонического сигнала равен:

. (3.11)

Обозначим отношение , где — граничная частота полосы пропускания дифференцирующей цепи.

Выражение для коэффициента передачи примет вид:

Модуль коэффициента передачи равен:

. (3.13)

— граничная частота полосы пропускания, на которой модуль реактивного сопротивления становится равным величине активного сопротивления, а коэффициент передачи цепи равен . Зависимость модуля коэффициента передачи от частоты называется амплитудно–частотной характеристикой (АЧХ).

Зависимость угла сдвига фаз между выходным и входным напряжениями от частоты называется фазовой характеристикой (ФЧХ). Фазовая характеристика:

Ниже на рис. 3.5 представлены АЧХ и ФЧХ дифференцирующей цепи:

Рис. 3.5. Амплитудно–частотная и фазовая характеристики

Дифференцирующей цепи

Из амплитудно-частотной характеристики видно, что прохождение сигналов через дифференцирующую цепь сопровождается уменьшением амплитуд низкочастотных составляющих его спектра. Дифференцирующая цепь является фильтром высоких частот.

Из фазовой характеристики видно, что фазы низкочастотных составляющих сдвигаются на больший угол, чем фазы высокочастотных составляющих.

Переходную характеристику дифференцирующей цепи можно получить, если на вход подать напряжение в виде единичного скачка. Комплексный коэффициент передачи равен

Мы имеем полное право перейти к рассмотрению цепей, состоящих из этих элементов 🙂 Этим мы сегодня и займемся.

И первая цепь, работу которой мы рассмотрим – дифференцирующая RC-цепь.

Дифференцирующая RC-цепь.

Из названия цепи, в принципе, уже понятно, что за элементы входят в ее состав – это конденсатор и резистор 🙂 И выглядит она следующим образом:

Работа данной схемы основана на том, что ток, протекающий через конденсатор , прямо пропорционален скорости изменения напряжения, приложенного к нему:

Напряжения в цепи связаны следующим образом (по закону Кирхгофа):

В то же время, по закону Ома мы можем записать:

Выразим из первого выражения и подставим во второе:

При условии, что (то есть скорость изменения напряжения низкая) мы получаем приближенную зависимость для напряжения на выходе:

Таким образом, цепь полностью оправдывает свое название, ведь напряжение на выходе представляет из себя дифференциал входного сигнала.

Но возможен еще и другой случай, когда title="Rendered by QuickLaTeX.com" height="22" width="134" style="vertical-align: -6px;"> (быстрое изменение напряжения). При выполнении этого равенства мы получаем такую ситуацию:

То есть: .

Можно заметить, что условие будет лучше выполняться при небольших значениях произведения , которое называют постоянной времени цепи :

Давайте разберемся, какой смысл несет в себе эта характеристика цепи 🙂

Заряд и разряд конденсатора происходит по экспоненциальному закону:

Здесь – напряжение на заряженном конденсаторе в начальный момент времени. Давайте посмотрим, каким будет значение напряжения по истечении времени :

Напряжение на конденсаторе уменьшится до 37% от первоначального.

Получается, что – это время, за которое конденсатор:

  • при заряде – зарядится до 63%
  • при разряде – разрядится на 63% (разрядится до 37%)

С постоянной времени цепи мы разобрались, давайте вернемся к дифференцирующей RC-цепи 🙂

Теоретические аспекты функционирования цепи мы разобрали, так что давайте посмотрим, как она работает на практике. А для этого попробуем подавать на вход какой-нибудь сигнал и посмотрим, что получится на выходе. В качестве примера, подадим на вход последовательность прямоугольных импульсов:

А вот как выглядит осциллограмма выходного сигнала (второй канал – синий цвет):

Что же мы тут видим?

Большую часть времени напряжение на входе неизменно, а значит его дифференцаил равен 0 (производная константы = 0). Именно это мы и видим на графике, значит цепь выполняет свою дифференцирующую функцию. А с чем же связаны всплески на выходной осциллограмме? Все просто – при “включении” входного сигнала происходит процесс зарядки конденсатора, то есть по цепи проходит ток зарядки и напряжение на выходе максимально. А затем по мере протекания процесса зарядки ток уменьшается по экспоненциальному закону до нулевого значения, а вместе с ним уменьшается напряжение на выходе, ведь оно равно . Давайте увеличим масштаб осциллограммы и тогда мы получим наглядную иллюстрацию процесса зарядки:

При “отключении” сигнала на входе дифференцирующей цепи происходит аналогичный переходный процесс, но только вызван он не зарядкой, а разрядкой конденсатора:

В данном случае постоянная времени цепи у нас имеет небольшую величину, поэтому цепь хорошо дифференцирует входной сигнал. По нашим теоретическим расчетам, чем больше мы будем увеличивать постоянную времени, тем больше выходной сигнал будет похож на входной. Давай проверим это на практике 🙂

Будем увеличивать сопротивление резистора, что и приведет к росту :

Тут даже не надо ничего комментировать – результат налицо 🙂 Мы подтвердили теоретические выкладки, проведя практические эксперименты, так что давайте переходить к следующему вопросу – к интергрирующим RC-цепям .


Запишем выражения для вычисления тока и напряжения данной цепи:

В то же время ток мы можем определить из Закона Ома:

Приравниваем эти выражения и получаем:

Проинтегрируем правую и левую части равенства:

Как и в случае с дифференцирующей RC-цепочкой здесь возможны два случая:

Для того, чтобы убедиться в работоспособности цепи, давайте подадим на ее вход точно такой же сигнал, какой мы использовали при анализе работы дифференцирующей цепи, то есть последовательность прямоугольных импульсов. При малых значениях сигнал на выходе будет очень похож на входной сигнал, а при больших величинах постоянной времени цепи, на выходе мы увидим сигнал, приближенно равный интегралу входного. А какой это будет сигнал? Последовательность импульсов представляет собой участки равного напряжения, а интеграл от константы представляет из себя линейную функцию (). Таким образом, на выходе мы должны увидеть пилообразное напряжение. Проверим теоретические выкладки на практике:

Желтым цветом здесь изображен сигнал на входе, а синим, соответственно, выходные сигналы при разных значениях постоянной времени цепи. Как видите, мы получили именно такой результат, который и ожидали увидеть 🙂

На этом мы и заканчиваем сегодняшнюю статью, но не заканчиваем изучать электронику, так что до встречи в новых статьях! 🙂

Рассмотрим электрическую цепь из резистора сопротивлением R и конденсатора ёмкостью C , представленную на рисунке.

Элементы R и C соединены последовательно, значит, ток в их цепи можно выразить, исходя из производной напряжения заряда конденсатора dQ/dt = C(dU/dt) и закона Ома U/R . Напряжение на выводах резистора обозначим U R .
Тогда будет иметь место равенство:

Проинтегрируем последнее выражение . Интеграл левой части уравнения будет равен U out + Const . Перенесём постоянную составляющую Const в правую часть с тем же знаком.
В правой части постоянную времени RC вынесем за знак интеграла:

В итоге получилось, что выходное напряжение U out прямо-пропорционально интегралу напряжения на выводах резистора, следовательно, и входному току I in .
Постоянная составляющая Const не зависит от номиналов элементов цепи.

Чтобы обеспечить прямую пропорциональную зависимость выходного напряжения U out от интеграла входного U in , необходима пропорциональность входного напряжения от входного тока.

Нелинейное соотношение U in /I in во входной цепи вызвано тем, что заряд и разряд конденсатора происходит по экспоненте e -t/τ , которая наиболее нелинейна при t/τ ≥ 1, то есть, когда значение t соизмеримо или больше τ .
Здесь t - время заряда или разряда конденсатора в пределах периода.
τ = RC - постоянная времени - произведение величин R и C .
Если взять номиналы RC цепи, когда τ будет значительно больше t , тогда начальный участок экспоненты для короткого периода (относительно τ ) может быть достаточно линейным, что обеспечит необходимую пропорциональность между входным напряжением и током.

Для простой цепи RC постоянную времени обычно берут на 1-2 порядка больше периода переменного входного сигнала, тогда основная и значительная часть входного напряжения будет падать на выводах резистора, обеспечивая в достаточной степени линейную зависимость U in /I in ≈ R .
В таком случае выходное напряжение U out будет с допустимой погрешностью пропорционально интегралу входного U in .
Чем больше величины номиналов RC , тем меньше переменная составляющая на выходе, тем более точной будет кривая функции.

В большинстве случаев, переменная составляющая интеграла не требуется при использовании таких цепей, нужна только постоянная Const , тогда номиналы RC можно выбирать по возможности большими, но с учётом входного сопротивления следующего каскада.

В качестве примера, сигнал с генератора - положительный меандр 1V периодом 2 mS подадим на вход простой интегрирующей цепи RC с номиналами:
R = 10 kOhm, С = 1 uF. Тогда τ = RC = 10 mS.

В данном случае постоянная времени лишь в пять раз больше времени периода, но визуально интегрирование прослеживается в достаточной степени точно.
График показывает, что выходное напряжение на уровне постоянной составляющей 0.5в будет треугольной формы, потому как участки, не меняющиеся во времени, для интеграла будут константой (обозначим её a ), а интеграл константы будет линейной функцией. ∫adx = ax + Const . Величина константы a определит тангенса угла наклона линейной функции.

Проинтегрируем синусоиду, получим косинус с обратным знаком ∫sinxdx = -cosx + Const .
В данном случае постоянная составляющая Const = 0.

Если подать на вход сигнал треугольной формы, на выходе будет синусоидальное напряжение.
Интеграл линейного участка функции - парабола. В простейшем варианте ∫xdx = x 2 /2 + Const .
Знак множителя определит направление параболы.

Недостаток простейшей цепочки в том, что переменная составляющая на выходе получается очень маленькой относительно входного напряжения.

Рассмотрим в качестве интегратора Операционный Усилитель (ОУ) по схеме, показанной на рисунке.

С учётом бесконечно большого сопротивления ОУ и правила Кирхгофа здесь будет справедливо равенство:

I in = I R = U in /R = - I C .

Напряжение на входах идеального ОУ здесь равно нулю, тогда на выводах конденсатора U C = U out = - U in .
Следовательно, U out определится, исходя из тока общей цепи.

При номиналах элементов RC , когда τ = 1 Sec, выходное переменное напряжение будет равно по значению интегралу входного. Но, противоположно по знаку. Идеальный интегратор-инвертор при идеальных элементах схемы.

Дифференцирующая цепь RC

Рассмотрим дифференциатор с применением Операционного Усилителя.

Идеальный ОУ здесь обеспечит равенство токов I R = - I C по правилу Кирхгофа.
Напряжение на входах ОУ равно нулю, следовательно, выходное напряжение U out = U R = - U in = - U C .
Исходя из производной заряда конденсатора, закона Ома и равенства значений токов в конденсаторе и резисторе, запишем выражение:

U out = RI R = - RI C = - RC(dU C /dt) = - RC(dU in /dt)

Отсюда видим, что выходное напряжение U out пропорционально производной заряда конденсатора dU in /dt , как скорости изменения входного напряжения.

При величине постоянной времени RC , равной единице, выходное напряжение будет равно по значению производной входного напряжения, но противоположно по знаку. Следовательно, рассмотренная схема дифференцирует и инвертирует входной сигнал.

Производная константы равна нулю, поэтому постоянная составляющая при дифференцировании на выходе будет отсутствовать.

В качестве примера, подадим на вход дифференциатора сигнал треугольной формы. На выходе получим прямоугольный сигнал.
Производная линейного участка функции будет константой, знак и величина которой определится наклоном линейной функции.

Для простейшей дифференцирующей цепочки RC из двух элементов используем пропорциональную зависимость выходного напряжения от производной напряжения на выводах конденсатора.

U out = RI R = RI C = RC(dU C /dt)

Если взять номиналы элементов RC, чтобы постоянная времени была на 1-2 порядка меньше длины периода, тогда отношение приращения входного напряжения к приращению времени в пределах периода может определять скорость изменения входного напряжения в определённой степени точно. В идеале это приращение должно стремиться к нулю. В таком случае основная часть входного напряжения будет падать на выводах конденсатора, а выходное будет составлять незначительную часть от входного, поэтому для вычислений производной такие схемы практически не используются.

Наиболее часто дифференцирующие и интегрирующие цепи RC применяют для изменения длины импульса в логических и цифровых устройствах.
В таких случаях номиналы RC рассчитывают по экспоненте e -t/ RC исходя из длины импульса в периоде и требуемых изменений.
Например, ниже на рисунке показано, что длина импульса T i на выходе интегрирующей цепочки увеличится на время 3τ . Это время разряда конденсатора до 5% амплитудного значения.

На выходе дифференцирующей цепи амплитудное напряжение после подачи импульса появляется мгновенно, так как на выводах разряженного конденсатора оно равно нулю.
Далее следует процесс заряда и напряжение на выводах резистора убывает. За время 3τ оно уменьшится до 5% амплитудного значения.

Здесь 5% - величина показательная. В практических расчётах этот порог определится входными параметрами применяемых логических элементов.

Замечания и предложения принимаются и приветствуются!

Во многих радиотехнических устройствах используются простейшие цепи, выполняющие функцию дифференцирования или интегрирования входного сигнала, либо преобразующие спектральный состав этого сигнала. Цепи первого типа называются, соответственно, дифференцирующими и интегрирующими, а цепи второго типа называются фильтрами . К фильтрам относятся цепи, способные пропускать лишь сигналы определенного диапазона частот, и не пропускать (значительно ослаблять) сигналы не принадлежащие к этому диапазону. Если цепь пропускает все сигналы с частотами, меньшими некоторой граничной частоты f гр, то ее называют фильтром нижних частот (ФНЧ). Цепь, пропускающую практически без ослабления все сигналы с частотами большими некоторой граничной частоты f гр, называют фильтром верхних частот (ФВЧ ) . Кроме них существуют еще фильтры, пропускающие только сигналы, принадлежащие определенному частотному диапазону от f гр1 до f гр2 и ослабляющие сигналы всех частот f< f гр1 и f > f гр2 . Такие фильтры называются полосовыми (ПФ). Фильтры, пропускающие сигналы всех частот, кроме заданного диапазона, ограниченного частотами f гр1 и f гр2 , называются режекторными (заградительными).

На рис.3. показаны простейшие дифференцирующие цепи.

Коэффициент передачи цепи на рис.3,а равен:

Обозначим: и (2.4)

Тогда (2.3.) можно переписать:

(2.5)

Модуль коэффициента передачи напряжения:

(2.6)

При частоте активное сопротивление цепи R и реактивное равны и , (2.7)

т.е. на этой частоте выходное напряжение по модулю в раз меньше входного.

Для цепи на рис.3,б аналогично можно получить:

(2.8)

Обозначив или , (2.9)

Выражение (2.8.) приведем к виду:

,

который полностью совпадает с (2.5.). Поэтому и модуль коэффициента передачи напряжения будет определяться тоже соотношением (2.6). На частоте , определяемой по (2.9) активное и реактивное сопротивления цепи также будут равны, следовательно, будет справедливо и соотношение (2.7).

Преобразуем выражение (2.5):

(2.10)

Комплексный коэффициент передачи напряжения , определяет соотношение не только амплитуд входного и выходного напряжений по формуле (2.6), но и сдвиг фазы между ними. Из (2.10) очевидно, что откуда

Выражение (2.6.) определяет амплитудно – частотнуюхарактеристику (АЧХ), а (2.11.) – фазо – частотную характеристику (ФЧХ) дифференцирующих цепей. Вид этих характеристик представлен на рис.4.

На частотах , как следует из рис.5, представляющего собой частотную зависимость активного и реактивного сопротивлений цепи,

, и

поэтому ток в цепи можно определить

Выходное напряжение при этом условии будет

(2.12)

Соотношение (2.12) показывает, что цепь рис.3,а действительно выполняет функцию дифференцирования входного напряжения, если выполняется условие .

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «dailykvak.ru» — Роутеры. Модемы. Программы. Компьютер. Решения